loading
Richtek

User Guide for RTQ2533W Low Dropout Linear Regulator Evaluation Board

EVB_RTQ2533WGQV(2)

Share
ACTIVE

The Evaluation Board user guide describes the operational use of the RTQ2533W evaluation board as a reference design for demonstration and evaluation of the RTQ2533W, a high-current, ultra-low noise, ultra low-dropout (LDO) linear regulator.

General Description

The Evaluation Board user guide describes the operational use of the RTQ2533W evaluation board as a reference design for demonstration and evaluation of the RTQ2533W, a high-current, ultra-low noise, ultra low-dropout (LDO) linear regulator.

Included in this user guide are setup and operating instructions, thermal and layout guidelines, a printed circuit board (PCB) layout, a schematic diagram, and a bill of materials (BOM). For more detail information, please refer to the RTQ2533W datasheet.



Performance Specification Summary

Summary of the RTQ2533W Evaluation Board performance specificiaiton is provided in Table 1. The ambient temperature is 25°C.


Table 1. RTQ2533W Evaluation Board Performance Specification Summary

Specification

Test Conditions

Min

Typ

Max

Unit

Input Voltage Range

1.1

1.1

6.5

V

Output Current

0

--

3

A

Output Voltage Range

Using ecternal resistors

0.8

0.8

5.5

V

Line Regulation

IOUT = 1mA, 1.1V ≤ VIN ≤ 6.5V

--

0.05

--

%/V

Load Regulation

1mA ≤ IOUT ≤ 3A

--

0.08

--

%/A

Dropout Voltage

VIN = 1.1V to 6.5V, IOUT = 3A,

VFB = 0.8V - 3%

--

110

180

mV



Power-up Procedure

Suggestion Required Equipments

  • RTQ2533W Evaluation Board
  • DC power supply capable of at least 6.5V and 3A
  • Electronic load capable of 3A
  • Function generator
  • Oscilloscope

Quick Start Procedures

The Evaluation Board is fully assembled and tested. Follow the steps below to verify board operation. Do not turn on supplies until all connections are made. When measuring the output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the output voltage ripple by touching the probe tip and groundring directly across the last output capacitor.


Proper measurement equipment setup and follow the procedure below.

1) With power off, connect the input power supply to VIN and GND pins.

2) With power off, connect the electronic load between the VOUT and nearest GND pins.

3) Turn on the power supply at the input. Make sure that the input voltage does not exceeds 6V on the Evaluation Board.

4) Check for the proper output voltage using a voltmeter.

5) Once the proper output voltage is established, adjust the load within the operating ranges and observe the output voltage regulation, quiescent current, dropout voltage, PSRR, noise and other performance.



Detailed Description of Hardware

Headers Description and Placement

一張含有 文字, 電子產品, 電路 的圖片

自動產生的描述

Carefully inspect all the components used in the EVB according to the following Bill of Materials table, and then make sure all the components are undamaged and correctly installed. If there is any missing or damaged component, which may occur during transportation, please contact our distributors or e-mail us at evb_service@richtek.com.


Test Points

The EVB is provided with the test points and pin names listed in the table below.

Test Point/

Pin Name

Function

VOUT

Output of the regulator.

VIN

Supply input pin.

BIAS

Bias input pin.

PG

Power good sense pin.

GND

System ground pin.

EN

Enable sense pin.

VOUT-S1/VOUT-S2

Waveform sense pin for resistor R3.

JP1

User can decide EN pin connected to high or low.

JP3

Output voltage setting pin.

JP4

Feedback voltage sense pin.

J5

Short to by-pass resistor R3.



Bill of Materials

VIN = 1.1V to 6.5V, VOUT = 0.8V to 5.5V, IOUT = 2A

Reference

Count

Part Number

Value

Description

Package

Manufacturer

U1

1

RTQ2533WGQW(2)

RTQ2533WGQW(2)

LDO

VQFN-20L 3.5x3.5

RICHTEK

C-NR/SS, CFF1

2

GRM033R71E103KE14

10nF

Capacitor, ceramic,

50V, X7R

0603

MURATA

C3, C11

2

GRM21BR61A476ME15

47μF

Capacitor, ceramic,

10V, X5R

0805

MURATA

C9, C12

2

0603B104K500CT

0.1μF

Capacitor, ceramic,

50V, X7R

0603

WALSIN

R-SNS, R3

2

WR06X000 PTL

0

Resistor, Chip

0603

WALSIN

REN1, RPG1

2

WR06X1003FTL

100k

Resistor, Chip

0603

WALSIN



Typical Applications

EVB Schematic Diagram

Technical Document Image Preview

1. The capacitance values of the input and output capacitors will influence the input and output voltage ripple.

2. MLCC capacitors have degrading capacitance at DC bias voltage, and especially smaller size MLCC capacitors will have much lower capacitance.

3. VOUT select pin settings of JP3 please refer to Table 2.


Table 2. VOUT Select Pin Settings for Different Targets

VOUT (V)

50mV

100mV

200mV

400mV

800mV

1.6V

VOUT (V)

50mV

100mV

200mV

400mV

800mV

1.6V

0.8

Open

Open

Open

Open

Open

Open

2.4

Open

Open

Open

Open

Open

GND

0.85

GND

Open

Open

Open

Open

Open

2.45

GND

Open

Open

Open

Open

GND

0.9

Open

GND

Open

Open

Open

Open

2.5

Open

GND

Open

Open

Open

GND

0.95

GND

GND

Open

Open

Open

Open

2.55

GND

GND

Open

Open

Open

GND

1

Open

Open

GND

Open

Open

Open

2.6

Open

Open

GND

Open

Open

GND

1.05

GND

Open

GND

Open

Open

Open

2.65

GND

Open

GND

Open

Open

GND

1.1

Open

GND

GND

Open

Open

Open

2.7

Open

GND

GND

Open

Open

GND

1.15

GND

GND

GND

Open

Open

Open

2.75

GND

GND

GND

Open

Open

GND

1.2

Open

Open

Open

GND

Open

Open

2.8

Open

Open

Open

GND

Open

GND

1.25

GND

Open

Open

GND

Open

Open

2.85

GND

Open

Open

GND

Open

GND

1.3

Open

GND

Open

GND

Open

Open

2.9

Open

GND

Open

GND

Open

GND

1.35

GND

GND

Open

GND

Open

Open

2.95

GND

GND

Open

GND

Open

GND

1.4

Open

Open

GND

GND

Open

Open

3

Open

Open

GND

GND

Open

GND

1.45

GND

Open

GND

GND

Open

Open

3.05

GND

Open

GND

GND

Open

GND

1.5

Open

GND

GND

GND

Open

Open

3.1

Open

GND

GND

GND

Open

GND

1.55

GND

GND

GND

GND

Open

Open

3.15

GND

GND

GND

GND

Open

GND

1.6

Open

Open

Open

Open

GND

Open

3.2

Open

Open

Open

Open

GND

GND

1.65

GND

Open

Open

Open

GND

Open

3.25

GND

Open

Open

Open

GND

GND

1.7

Open

GND

Open

Open

GND

Open

3.3

Open

GND

Open

Open

GND

GND

1.75

GND

GND

Open

Open

GND

Open

3.35

GND

GND

Open

Open

GND

GND

1.8

Open

Open

GND

Open

GND

Open

3.4

Open

Open

GND

Open

GND

GND

1.85

GND

Open

GND

Open

GND

Open

3.45

GND

Open

GND

Open

GND

GND

1.9

Open

GND

GND

Open

GND

Open

3.5

Open

GND

GND

Open

GND

GND

1.95

GND

GND

GND

Open

GND

Open

3.55

GND

GND

GND

Open

GND

GND

2

Open

Open

Open

GND

GND

Open

3.6

Open

Open

Open

GND

GND

GND

2.05

GND

Open

Open

GND

GND

Open

3.65

GND

Open

Open

GND

GND

GND

2.1

Open

GND

Open

GND

GND

Open

3.7

Open

GND

Open

GND

GND

GND

2.15

GND

GND

Open

GND

GND

Open

3.75

GND

GND

Open

GND

GND

GND

2.2

Open

Open

GND

GND

GND

Open

3.8

Open

Open

GND

GND

GND

GND

2.25

GND

Open

GND

GND

GND

Open

3.85

GND

Open

GND

GND

GND

GND

2.3

Open

GND

GND

GND

GND

Open

3.9

Open

GND

GND

GND

GND

GND

2.35

GND

GND

GND

GND

GND

Open

3.95

GND

GND

GND

GND

GND

GND


Measure Result

Power Up Response

Output Noise vs. Frequency and Output Voltage

Technical Document Image Preview

Technical Document Image Preview

PSRR vs. Frequency and Iout

Load Transient Response

Technical Document Image Preview

Technical Document Image Preview

Dropout Voltage vs. Output Current

OCP

Technical Document Image Preview

Technical Document Image Preview

Bode plot

Technical Document Image Preview

Note: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the output voltage ripple by touching the probe tip directly across the output capacitor.



Evaluation Board Layout

Figure 1 to Figure 4 are RTQ2533W Evaluation Board layout. This board is constructed on four-layer PCB, outer layers with 1 oz. Cu and inner layers with 1 oz. Cu.

一張含有 文字, 電子用品, 螢幕擷取畫面 的圖片

自動產生的描述

Figure 1. Top View (1st layer)


一張含有 文字, 電子用品, 電腦 的圖片

自動產生的描述

Figure 2. PCB Layout—Inner Side (2nd Layer)


Technical Document Image Preview

Figure 3. PCB Layout—Inner Side (3rd Layer)


一張含有 文字, 電子用品, 電腦 的圖片

自動產生的描述

Figure 4. Bottom View (4th Layer)

Title Last Update Share Download
Evaluation Board User Guide 2023/05/11
Bill of Materials 2023/05/11
Schematic 2023/05/11
Gerber File 2023/05/11
RTQ2533W
RTQ2533W

RTQ2533W 是具有 3A 负载能力的超低压差(最大 180mV@3A)、超低噪声(6.8μVRMS)线性稳压器,其输入电压最低可达 1.1V,输出电压可用 PCB 连线的方式进行最高可达 3.95V 的设定,更高的输出电压则需使用外接电阻分压器进行设定。
RTQ2533 的低噪声、高 PSRR 和大电流负载能力使其成为模拟-数字转换器(ADC)、数字-模拟转换器(DAC)和 RF 射频元件等噪声敏感器件供电的理想选择,又因高输出精度、遥测能力和可以降低冲击电流的软启动能力而成为 FPGA、DSP 和 ASIC 等数字器件的理想供电器件。
RTQ2533 还具有易于进行时序控制的使能控制输入和 Power Good 输出,其输出噪声可通过在其 NR/SS 端外接旁路电容进行进一步消减。其工作特性可在 TJ = -40°ree;C ~ 125°ree;C 得到保证,其封装形式为 VQFN-20L 3.5x3.5。

Part NumberFree SampleBuy From Authorized Distributor
EVB_RTQ2533WGQV(2) Not available Buy from Distributor
TOP